Jupyter Notebook

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ creating schemas: core==0.46.3 
βœ… saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-30 13:57:45)
βœ… saved: Storage(id='DE9gh7kk', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-08-30 13:57:45, created_by_id='DzTjkKse')
βœ… loaded instance: testuser1/mydata
πŸ’‘ did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
βœ… loaded instance: testuser1/mydata (lamindb 0.51.2)

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
output_file.save()
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='LZUpRpX9PLFrh9', name='Upload GWS CRISPRa result', type='app', updated_at=2023-08-30 13:57:47, created_by_id='DzTjkKse')
βœ… saved: Run(id='RMn2HPsjcq6Awy60e7RQ', run_at=2023-08-30 13:57:47, transform_id='LZUpRpX9PLFrh9', created_by_id='DzTjkKse')
πŸ’‘ file in storage 'mydata' with key 'schmidt22-crispra-gws-IFNG.csv'

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
# access
input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
# identify hits
input_df = input_file.load().set_index("id")
output_df = input_df[input_df["pos|fdr"] < 0.01].copy()
# register hits in output file
ln.File(output_df, description="hits from schmidt22 crispra GWS").save()
Hide code cell output
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E
❗ record with similar name exist! did you mean to load it?
id __ratio__
name
Test User1 DzTjkKse 90.0
βœ… saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-08-30 13:57:48)
βœ… saved: Transform(id='HTTA2IE76s4v07', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-08-30 13:57:48, created_by_id='bKeW4T6E')
βœ… saved: Run(id='YtfoF1jsmmtkHtTQJndL', run_at=2023-08-30 13:57:48, transform_id='HTTA2IE76s4v07', created_by_id='bKeW4T6E')
πŸ’‘ adding file zZScBF1Mror14Bv3vlh6 as input for run YtfoF1jsmmtkHtTQJndL, adding parent transform LZUpRpX9PLFrh9
πŸ’‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/xBMB2SjQ6MgUAS2WDt41.parquet')
πŸ’‘ data is a dataframe, consider using .from_df() to link column names as features
βœ… storing file 'xBMB2SjQ6MgUAS2WDt41' at '.lamindb/xBMB2SjQ6MgUAS2WDt41.parquet'

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/38e9cf475dc4acda73be51eab6d7a3f58b02fe96/99858/_images/2ba0740aabebffc5d0b5e8740d39962e61c7b9b7e6ddf5bb32580ec2f8ca66b3.svg

Sequencer upload #

Upload files from sequencer:

ln.setup.login("testuser1")
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
# register output files of upload
upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='slb7MJddMVlVwZ', name='Chromium 10x upload', type='pipeline', updated_at=2023-08-30 13:57:49, created_by_id='DzTjkKse')
βœ… saved: Run(id='eSKXarzaWRTI3b62CIRZ', run_at=2023-08-30 13:57:49, transform_id='slb7MJddMVlVwZ', created_by_id='DzTjkKse')
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.track(transform)
# access uploaded files as inputs for the pipeline
input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
input_paths = [file.stage() for file in input_files]
# register output files
output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
βœ… saved: Transform(id='HqzU93mdqCWuym', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-08-30 13:57:50, created_by_id='bKeW4T6E')
βœ… saved: Run(id='907lAHK5Dg0zmP8YMq30', run_at=2023-08-30 13:57:50, transform_id='HqzU93mdqCWuym', created_by_id='bKeW4T6E')
πŸ’‘ adding file G5FuAsmwnwAMyjNhuxTm as input for run 907lAHK5Dg0zmP8YMq30, adding parent transform slb7MJddMVlVwZ
πŸ’‘ adding file Z3xMcsSD1oa4yq20exGR as input for run 907lAHK5Dg0zmP8YMq30, adding parent transform slb7MJddMVlVwZ
βœ… created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/

Post-process these 3 files:

transform = ln.Transform(name="Postprocess Cell Ranger", version="2.0", type="pipeline")
ln.track(transform)
input_files = [f.stage() for f in output_files]
output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
output_file = ln.File(output_path, description="perturbseq counts")
output_file.save()
Hide code cell output
βœ… saved: Transform(id='0z1LmQPIOdrDQn', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-08-30 13:57:50, created_by_id='bKeW4T6E')
βœ… saved: Run(id='smB1j0pzgTkPYetsHONB', run_at=2023-08-30 13:57:50, transform_id='0z1LmQPIOdrDQn', created_by_id='bKeW4T6E')
πŸ’‘ adding file wQFUAdqfjxBz5NcGRlEG as input for run smB1j0pzgTkPYetsHONB, adding parent transform HqzU93mdqCWuym
πŸ’‘ adding file mbVl8C2325PJpXsem2Ph as input for run smB1j0pzgTkPYetsHONB, adding parent transform HqzU93mdqCWuym
πŸ’‘ adding file I9BuQds9Cw3qdBk0NoIe as input for run smB1j0pzgTkPYetsHONB, adding parent transform HqzU93mdqCWuym
πŸ’‘ file in storage 'mydata' with key 'schmidt22_perturbseq.h5ad'
πŸ’‘ data is AnnDataLike, consider using .from_anndata() to link var_names and obs.columns as features

Inspect data flow:

output_files[0].view_flow()
https://d33wubrfki0l68.cloudfront.net/166789e475ce488d1360f2dcb2972130eff1abba/9ee12/_images/506c8cee9dee7d001a2260160d8592b460f8083378251ba564045583e3f13851.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

transform = ln.Transform(
    name="Perform single cell analysis, integrate with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
Hide code cell output
βœ… saved: Transform(id='a4R8rGPdfhuLJc', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-08-30 13:57:50, created_by_id='bKeW4T6E')
βœ… saved: Run(id='IMmyJ0Sl7VpPVVC11Adx', run_at=2023-08-30 13:57:50, transform_id='a4R8rGPdfhuLJc', created_by_id='bKeW4T6E')
πŸ’‘ adding file ptzKAoPD1mLCxhStG2wV as input for run IMmyJ0Sl7VpPVVC11Adx, adding parent transform 0z1LmQPIOdrDQn
πŸ’‘ adding file xBMB2SjQ6MgUAS2WDt41 as input for run IMmyJ0Sl7VpPVVC11Adx, adding parent transform HTTA2IE76s4v07
/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1113: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
  if not is_categorical_dtype(df_full[k]):
/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1113: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
  if not is_categorical_dtype(df_full[k]):
/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/scanpy/plotting/_tools/scatterplots.py:1207: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
  if not is_categorical_dtype(values):
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
βœ… storing file '5PJMSsgZGypIy13DAXiW' at 'figures/umap_fig1_score-wgs-hits.png'
/opt/hostedtoolcache/Python/3.9.17/x64/lib/python3.9/site-packages/scanpy/plotting/_matrixplot.py:143: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
  values_df = self.obs_tidy.groupby(level=0).mean()
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
βœ… storing file 'PS5jELNGpsaK0wuCqKW8' at 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

Review results#

Let’s load one of the plots:

ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
πŸ’‘ notebook imports: ipython==8.14.0 lamindb==0.51.2 scanpy==1.9.4
βœ… saved: Transform(id='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-08-30 13:57:52, created_by_id='bKeW4T6E')
βœ… saved: Run(id='6uQCrfx3WtZxVayelsDw', run_at=2023-08-30 13:57:52, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')
πŸ’‘ adding file PS5jELNGpsaK0wuCqKW8 as input for run 6uQCrfx3WtZxVayelsDw, adding parent transform a4R8rGPdfhuLJc
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')
display(Image(filename=file.path))
https://d33wubrfki0l68.cloudfront.net/dcbd1e67232f2ede82171ba02237575cc586c2b7/1ceff/_images/45891ad4693b5bfeb52a48b2ab2e5d0a82220b9482360ee1a8757fad581fffdc.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
https://d33wubrfki0l68.cloudfront.net/8960033330f7d4690abd8fc9296e02471dba6f77/eb8bf/_images/b5d415ecc5f064d69a02b438a232dfa9412e9e0f78182e5a39da49d4616dfd18.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name version initial_version_id type reference updated_at created_by_id
id
HqzU93mdqCWuym Cell Ranger None 7.2.0 None pipeline None 2023-08-30 13:57:50 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/a1aa144ab5b18fd497e1f364a1290dedc4fe2bb2/65446/_images/8871057a8d2686281a8af1fd3d52a09e051337963d2347b6208405b4a7d32494.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
xBMB2SjQ6MgUAS2WDt41 DE9gh7kk None .parquet DataFrame hits from schmidt22 crispra GWS None None 18368 yFC1asXuK86w1NOBD_4dgw md5 HTTA2IE76s4v07 YtfoF1jsmmtkHtTQJndL 2023-08-30 13:57:48 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='LZUpRpX9PLFrh9', name='Upload GWS CRISPRa result', type='app', updated_at=2023-08-30 13:57:47, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-30 13:57:49)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name version initial_version_id type reference updated_at created_by_id
id
HTTA2IE76s4v07 GWS CRIPSRa analysis None None None notebook None 2023-08-30 13:57:48 bKeW4T6E
HqzU93mdqCWuym Cell Ranger None 7.2.0 None pipeline None 2023-08-30 13:57:50 bKeW4T6E
0z1LmQPIOdrDQn Postprocess Cell Ranger None 2.0 None pipeline None 2023-08-30 13:57:50 bKeW4T6E
a4R8rGPdfhuLJc Perform single cell analysis, integrate with C... None None None notebook None 2023-08-30 13:57:52 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 None notebook None 2023-08-30 13:57:52 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name version initial_version_id type reference updated_at created_by_id
id
HTTA2IE76s4v07 GWS CRIPSRa analysis None None None notebook None 2023-08-30 13:57:48 bKeW4T6E
a4R8rGPdfhuLJc Perform single cell analysis, integrate with C... None None None notebook None 2023-08-30 13:57:52 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 None notebook None 2023-08-30 13:57:52 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
PS5jELNGpsaK0wuCqKW8 DE9gh7kk figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 a4R8rGPdfhuLJc IMmyJ0Sl7VpPVVC11Adx 2023-08-30 13:57:52 bKeW4T6E
5PJMSsgZGypIy13DAXiW DE9gh7kk figures/umap_fig1_score-wgs-hits.png .png None None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 a4R8rGPdfhuLJc IMmyJ0Sl7VpPVVC11Adx 2023-08-30 13:57:52 bKeW4T6E
ptzKAoPD1mLCxhStG2wV DE9gh7kk schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None None 20659936 la7EvqEUMDlug9-rpw-udA md5 0z1LmQPIOdrDQn smB1j0pzgTkPYetsHONB 2023-08-30 13:57:50 bKeW4T6E
wQFUAdqfjxBz5NcGRlEG DE9gh7kk perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None None 6 S2SCt9zOGtAW2oEIcaSzXQ md5 HqzU93mdqCWuym 907lAHK5Dg0zmP8YMq30 2023-08-30 13:57:50 bKeW4T6E
mbVl8C2325PJpXsem2Ph DE9gh7kk perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None None 6 mZ9squsQ93O8vJ3sAmV5IA md5 HqzU93mdqCWuym 907lAHK5Dg0zmP8YMq30 2023-08-30 13:57:50 bKeW4T6E
I9BuQds9Cw3qdBk0NoIe DE9gh7kk perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None None 6 NpqTJ41DRA1m1jZ_2uFydg md5 HqzU93mdqCWuym 907lAHK5Dg0zmP8YMq30 2023-08-30 13:57:50 bKeW4T6E
Z3xMcsSD1oa4yq20exGR DE9gh7kk fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None None 6 s_mXu4q0usZRMCdNXwfN6A md5 slb7MJddMVlVwZ eSKXarzaWRTI3b62CIRZ 2023-08-30 13:57:49 DzTjkKse
Run

transform_id run_at created_by_id reference reference_type
id
RMn2HPsjcq6Awy60e7RQ LZUpRpX9PLFrh9 2023-08-30 13:57:47 DzTjkKse None None
YtfoF1jsmmtkHtTQJndL HTTA2IE76s4v07 2023-08-30 13:57:48 bKeW4T6E None None
eSKXarzaWRTI3b62CIRZ slb7MJddMVlVwZ 2023-08-30 13:57:49 DzTjkKse None None
907lAHK5Dg0zmP8YMq30 HqzU93mdqCWuym 2023-08-30 13:57:50 bKeW4T6E None None
smB1j0pzgTkPYetsHONB 0z1LmQPIOdrDQn 2023-08-30 13:57:50 bKeW4T6E None None
IMmyJ0Sl7VpPVVC11Adx a4R8rGPdfhuLJc 2023-08-30 13:57:50 bKeW4T6E None None
6uQCrfx3WtZxVayelsDw 1LCd8kco9lZUz8 2023-08-30 13:57:52 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
DE9gh7kk /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-08-30 13:57:45 DzTjkKse
Transform

name short_name version initial_version_id type reference updated_at created_by_id
id
1LCd8kco9lZUz8 Project flow project-flow 0 None notebook None 2023-08-30 13:57:52 bKeW4T6E
a4R8rGPdfhuLJc Perform single cell analysis, integrate with C... None None None notebook None 2023-08-30 13:57:52 bKeW4T6E
0z1LmQPIOdrDQn Postprocess Cell Ranger None 2.0 None pipeline None 2023-08-30 13:57:50 bKeW4T6E
HqzU93mdqCWuym Cell Ranger None 7.2.0 None pipeline None 2023-08-30 13:57:50 bKeW4T6E
slb7MJddMVlVwZ Chromium 10x upload None None None pipeline None 2023-08-30 13:57:49 DzTjkKse
HTTA2IE76s4v07 GWS CRIPSRa analysis None None None notebook None 2023-08-30 13:57:48 bKeW4T6E
LZUpRpX9PLFrh9 Upload GWS CRISPRa result None None None app None 2023-08-30 13:57:47 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-08-30 13:57:50
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-08-30 13:57:49
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
πŸ’‘ deleting instance testuser1/mydata
βœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
βœ…     instance cache deleted
βœ…     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata