Jupyter Notebook

Integrate scRNA-seq datasets#

scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.

Here, weโ€™ll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.

Setup#

!lamin load test-scrna
Hide code cell output
๐Ÿ’ก found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
โœ… loaded instance: testuser1/test-scrna

import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
โœ… loaded instance: testuser1/test-scrna (lamindb 0.51.2)
ln.track()
๐Ÿ’ก notebook imports: anndata==0.9.2 lamindb==0.51.2 lnschema_bionty==0.30.2 pandas==1.5.3
โœ… saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-08-30 13:54:57, created_by_id='DzTjkKse')
โœ… saved: Run(id='k2meR2P70UbFN4MRQ6kS', run_at=2023-08-30 13:54:57, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')

Query files based on metadata#

assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,  # scRNA-seq
    species=species.human,  # human
    cell_types__name__contains="monocyte",  # monocyte
).distinct()
query.df()
storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
Oy6qOAHJ70JYO9KboACv JcsjX8ry None .h5ad AnnData Conde22 None None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 CjznAQYFpOChcImqi5Rh 2023-08-30 13:54:40 DzTjkKse
VypFdfi6dxmi5ehxnkJO JcsjX8ry None .h5ad AnnData 10x reference pbmc68k None None 589484 eKVXV5okt5YRYjySMTKGEw md5 Nv48yAceNSh8z8 CjznAQYFpOChcImqi5Rh 2023-08-30 13:54:51 DzTjkKse

Intersect measured genes between two datasets#

# get file objects
file1, file2 = query.list()
file1.describe()
๐Ÿ’ก File(id='Oy6qOAHJ70JYO9KboACv', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-08-30 13:54:40)

Provenance:
    ๐Ÿ—ƒ๏ธ storage: Storage(id='JcsjX8ry', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-30 13:54:56, created_by_id='DzTjkKse')
    ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-30 13:54:51, created_by_id='DzTjkKse')
    ๐Ÿ‘ฃ run: Run(id='CjznAQYFpOChcImqi5Rh', run_at=2023-08-30 13:54:07, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
    ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-30 13:54:56)
Features:
  var (X):
    ๐Ÿ”— index (36503, bionty.Gene.id): ['ejRJTjuMLw8u', 'EqxkMcG5CXg0', '0CmxX38x3U7t', 'li3IhJ0B0cGx', 'mwK1HAypNvsN'...]
  obs (metadata):
    ๐Ÿ”— cell_type (32, bionty.CellType): ['naive B cell', 'macrophage', 'lymphocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'memory B cell']
    ๐Ÿ”— assay (4, bionty.ExperimentalFactor): ["10x 5' v1", "10x 5' v2", "10x 3' v3", 'single-cell RNA sequencing']
    ๐Ÿ”— tissue (17, bionty.Tissue): ['jejunal epithelium', 'skeletal muscle tissue', 'bone marrow', 'sigmoid colon', 'thymus']
    ๐Ÿ”— donor (12, core.Label): ['582C', 'D496', 'A36', 'D503', 'A52']
file1.view_flow()
https://d33wubrfki0l68.cloudfront.net/b45a319060969256c24d497a6d28dc432ff74e84/5e0e7/_images/d4b91e2215d767643e9da7398ed41b009a615bed69459344c4efaf4c1d53af99.svg
file2.describe()
๐Ÿ’ก File(id='VypFdfi6dxmi5ehxnkJO', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=589484, hash='eKVXV5okt5YRYjySMTKGEw', hash_type='md5', updated_at=2023-08-30 13:54:51)

Provenance:
    ๐Ÿ—ƒ๏ธ storage: Storage(id='JcsjX8ry', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-30 13:54:56, created_by_id='DzTjkKse')
    ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-30 13:54:51, created_by_id='DzTjkKse')
    ๐Ÿ‘ฃ run: Run(id='CjznAQYFpOChcImqi5Rh', run_at=2023-08-30 13:54:07, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
    ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-30 13:54:56)
Features:
  var (X):
    ๐Ÿ”— index (695, bionty.Gene.id): ['rk0wvy6H0nfb', 'vdWoHAHsKucN', 'Jf9vlAMND2f0', 'gcWdcha1esvb', 'T3vZYmBaajgO'...]
  external:
    ๐Ÿ”— assay (1, bionty.ExperimentalFactor): ['single-cell RNA sequencing']
    ๐Ÿ”— species (1, bionty.Species): ['human']
  obs (metadata):
    ๐Ÿ”— cell_type (9, bionty.CellType): ['dendritic cell', 'CD14-positive, CD16-negative classical monocyte', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'conventional dendritic cell', 'CD38-negative naive B cell']
file2.view_flow()
https://d33wubrfki0l68.cloudfront.net/be579a51d54b14a5cc6caaa12b8fe16848658922/04512/_images/e160a261be50911d58715a8e875a1dcc08ec1c89566a21dd483175051f13bb27.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()
๐Ÿ’ก adding file Oy6qOAHJ70JYO9KboACv as input for run k2meR2P70UbFN4MRQ6kS, adding parent transform Nv48yAceNSh8z8
๐Ÿ’ก adding file VypFdfi6dxmi5ehxnkJO as input for run k2meR2P70UbFN4MRQ6kS, adding parent transform Nv48yAceNSh8z8

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
695
shared_genes.list("symbol")[:10]
['NPM1',
 'SUMO2',
 'SNHG7',
 'PRF1',
 'ARPC5L',
 'FGFBP2',
 'PLD4',
 'PPM1G',
 'FCGR3A',
 'SSR3']

We also need to convert the ensembl_gene_id to symbol for file2 so that they can be concatenated:

mapper = pd.DataFrame(shared_genes.values_list("ensembl_gene_id", "symbol")).set_index(
    0
)[1]
mapper.head()
0
ENSG00000181163      NPM1
ENSG00000188612     SUMO2
ENSG00000233016     SNHG7
ENSG00000180644      PRF1
ENSG00000136950    ARPC5L
Name: 1, dtype: object
file2_adata.var.rename(index=mapper, inplace=True)

Intersect cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['conventional dendritic cell',
 'CD16-positive, CD56-dim natural killer cell, human']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subseted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร— n_vars = 126 ร— 0
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file                 
CD16-positive, CD56-dim natural killer cell, human  Conde22                  114
conventional dendritic cell                         Conde22                    7
CD16-positive, CD56-dim natural killer cell, human  10x reference pbmc68k      3
conventional dendritic cell                         10x reference pbmc68k      2
dtype: int64
Hide code cell content
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
๐Ÿ’ก deleting instance testuser1/test-scrna
โœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
โœ…     instance cache deleted
โœ…     deleted '.lndb' sqlite file
โ—     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna